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BBSTRACT

Bribiecsca, B. and Suzman, A., 197%. Shape description and shape similarity
measurenent For two-dimensional regions. Geo-Procgessing, 1: 129 - 144

The study of shape is an important part of image processing and understanding.
This article explains how to represent the shape or form of flat regions limited
by simply connected curves, This description produces for every region (chrough
an algorithm cxplained here) a shape number, which is unique and independent of
the translation, rotation and scaling of the region.

The precision in the representation obtained through a shape aumber is indicated
by the order of that shape number. The higher the order, the more accurate the
shape description. Informally, the number of ternary digits in a shape number
tells its oxder.

The paper contains tables of all the shape numbers of eorder K, for several K.
Newvertheless, these tables are not necessary for computing the shape number of a
region.

The shape number of any order can be deduced exclusively from the region; no
shape matching, cable lookup or string comparison is necessary.

The articls then intreduces the degree of similarity between the shapes of two
regions and gives an algorithm for computing it from the corresponding shape
numbers. Two regions with shapes that logk alike will have a high degree of
similarity.

No string matching or grammatical parsing is necessary te find out how close
in shape two regions are. Informally speaking, the degres of similarity between
the shapes of two regions is the highest optical resolution (power of the magnifying
lens) that still confuses them.

Finally, the »aper defines the distance between two shapes and find it to be
an ultradistance.

In this way, a quantitative study of shape is possible.

At the end of the paper, a related Theory "B" of shapes is presented that
disregards the eccentricity of a region and offers additional advantages for shape
comparison.

INTRODUCTION

Scene Analisis seeks to wonderstand a scene, for instance by assigning names to
its different parts and components as well as by explaining their relations and
structures.

Local and global information (Guzmén,1971), that is, shape and context, play

an important and mutually supporting role in Scene Analysis. If we lock at scenes
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found in coloring books for children (Fig. 1), the explanation (hame, purpose,
role) of each part is derived both from its shape and from the context, that is

to say, from the names of the parts close to it.

The role of shape in Scene Analysis

Take Fig. 1 which lacks color, texture, gray levels, and only has shapes, sizes
and structure. One can still make a good "explanation" and understanding of it.
Consequently, one of the authors has proposed (Guzmin, 1971) to represent explicitly
these three compenents, for instance by a graph where tho nodes contain shape and
size information about each region, and the arcs represent different rolations
("above", "between", "surrounded by") among the nodes.

Tt it therefore necessary to be able to describe the ghape {Pavlidis, 1978) of
an object (payt, region); to compare shapes; to decide how close two given shapes
are, or what is their resemblance or dissimilarity. & numerical reliable measure

for thosc concepts will give rise to a quantitative study of shape.

Definiticns

Region. A simply connected portion of a plane limited by a curve boundary. That
is, no holcs, no sclf=intersecting boundary. Clesed boundary. The region is
uniquely defined by the curve it has as boundary.

This paper deals with shapes of rcgions, but the shape numbers used here can

also be applied to open curves.

Freeman chain in four directions. For a glwven region and a given squarc grid of

fixed orientation and size, the Freeman chain in four directions is the curve ob-
tained by walking clockwise on the grid (on the "wires" of the grid) around and
outside the sguares that contain more than 50% of the region (Fig. 2].

The chain number (Fig. 2d) is obtained by clockwisely replacing each step along
the curve by the number 1, 2, 3, or 4, according to Fig. 2e. See suggestions 1
and 2 at the end of the paper.

Sometimes this procedure will break thin portions of regions and one will end
up with two non-connected chains. These are degenerate regions for that grid,

which have no shape numbers {g. v.} (Fig, 8.II).

Derivative of Preeman chains. It is the chain number (Fig. 2£) obtained by clock-

wise replacing each salient {(convex) corner of the Freeman chain (Fig. 2c) by a 1,

each straight corner by a 2, and each concave cornér by a 3, as Fig. 3g suggests.
The number obtained (Fiy. 2f) will be different if we change the size or orien-

tation of the grid.

Major axts of a regien. The straight line connecting the two perimeter points

furthest away from each other (Fig. 3bj.
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FIGURE | " STREET SCENE "

Each closed port (region) of this scene could ba described
by a unique shape number.

Ocassionally, there will be more than one major axis in a region. In that case,

select that which gives the shortest minor axis.

Miner axis of a region. M socgment perpendicular toe the major axis, and of length
and pesition such that the box formed by these bwo axes just encloses Lhe rogion
[(Fig. 3a).

Other axis for similar purposes are given by Guzmdn (1976,pp. 338-342), and by

Frecman and Shapira {1975).

Basic rectangle of a region. It is the rectangle baving its sides parallel to and

of sizos ciqual to the major and minor axis, such that it just cncloses the region

(Fig. 3d;.
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FIGURE 2 " CHAINS "

A the ragion. B the grid. C: tha Freeman chadin in four diractions.

O it <hain number. E: tha four diractions of (B} uaed to code (C)

into (D} F: the derivative of (C). G: the thtee Jypes of corners
used to code (C) into (F}.
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Eccentricity of a rectangle. It is the ratio of the long to the short side,

a > 1.,

Fccentricity of a regien. It is the eccentricity of its basic rectangle. It is
the ratioc of its major to minor axis. This definition coincides with that for an

ellipse.

—

FIGURE 3 " DEFINITIONS

o: minor axis of {(c}. b: major axis of Le). ¢ region.
d: baslc rectangls of ic).

THE SHAPE NUMBER OF A REGION

If a notation is going to be used to represent the shape of a region, it has
to be independent of the position, orientation and size of such region. It should
be reproducible: a region, when translated, magnified and rotated should still give
the same description as when untransformed. Two regions with different shapes
should produce different descriptions. Finally, the shape number should be unigue
for a given region; for instance, it should not depend on an arbitrary starting
point or a particular coordinate system.

If the notation can be deduced exclusively from the region, without comparison
with a table of cancnical shapes or shape descriptors, for instance, then we can
expect favings in memory and computer time for the procedure that finds ocut the
shape descriptien,

In this section, we first produce finite families of shape descriptors {avery
wmember of a family has the same order); we then exhibit a way to find out, for an
arbitrary region, its shape descriptor of any order. This descriptor indeed
gqualifies as a notation to represent shape.

In the next section we will see that this descriptor alsc permits to measure

the similarity or analogy between the shapes of two regions.

Discrete shapes

Regions of special interest are created when it is required to form a closed
curve using o sticks of the same length, but joining them end to end either
colinearly or forming 90° corners. It is clear that o must be even for the curve

to closa.



133

For instance, with 8 sticks you could form only the following regions: the sguare
{of size 2 by 2, Fig. 4a), the triangle (Fig. 4b} and the rectangle (Fig. 4c).
The shapes of these regions are called discrete shapes.

The shape number of a discrete region (that is, of a region having a discrete shape)

is obtained from that region by clockwisely replacing each salient corner by a 1,
each straight cormer by a 2, and each concave corner by a 2 (Fig. 2g). Moreover,
in order to obtain a unique shape numhey, we start the procedure in the corner
that produces a string {of 1, 2 and 3's) of minimum value.

For instance, the shape number of Fig. 4b is 11212113, which was cbtained by
starting in the wpper central salient corner and travelling clockwise (first right
and then down). Had we started in the lower left corner, we would have obtained
11311212 which is rejected because its value (as a ternary number} is larger than
11212113,

The shape number of a discrete shape does not depend on a grid of fixed orienta-
tion or size; it can be derived directly from the region. It differs in this
manner from "deriwvative of Freeman chain'.

The shape number of a discrete shape is unique. It does not depend on its posi-

tion, size or orientaticn.

The order of a shape number is the number of ternary digits it has. It is therxe-
fore equal to the number cf corners ( of types 1, 2 and 3 in Fig. 2g} that the
discrete shape has,

It is also the number of sticks (segments of equal length) present in the dis-

crete shape., It is always even. It is equal to the perimeter of the region.

All the discrete shapes of order 4

There is only one discrete shape of order four, the sguare. Its shape number
is 111,

This is the most primitive or fundamental shape. Imagine you are locking at
things very far away; you can not really differentiate much. BAll objects would

leook round (square, in this paper} and egual.

All the diserete shapes of order 6, 8, 10 and 12

There is only one discrete shape of order 6, the rectangle with shape number
112112,

The three discrete shapes of order § are given in Fig. 4. Here the triangle
appears for the first time.

The nine discrete shapes of order 10 are given in Fig. 5; those of order twelve

are in Fig. &. They are 36.
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FIGURE 4 “ ALL THE DISCRETE SHAPES OF ORDER 8 "
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FIGURE 6 " ALL THE DISCRETE SHAPES OF ORDER 12"

The order of o shape indicotes the aumber of sticks thot are
used to form it,

The discrete shape of a region

In order to find cut the shape number of order o for an arbitrary reglon {and
not just for the regions having discrete shapes), it is now only necessary to
associate in some manner to that region a discrete shape, and then to give the
shape number of that discrete shape o the region itself.

One way to proceed would be to compare (for instance, the areas in the least
squarss sengse) that region with every discrete shape cof order o {retrieved from a
table such as Fig. 5)1 and to select the discrete shape having the best f£it

{smallest error, best correlaticm} .

1This method could produce different shape nunbers than those found by the proce-~
dure described in the paper. Both methods are not eguivalent.
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Dther way is given below, preferred because it does not use table lookup, back-
tracking, error computation or pattern matching in the CONVERT (Guzmian and McIntosh,
1966} sense: we do not need to find out what is the distance or error between

11212113 and 12121212, for instance.

T find the shape number of order o of a region:

1. Pind out the basic rectangle and the eccentricity of the region.

2_  gelect the rectangle with shape number o and eccentyricity closest to e.
Align and center this rectangle aver the basic rectangle of the region, thus
defining a grid over the region.

The orientatlon of the grid Follows the basic rectangle, and the size of the
grid is =such that (a) every cell of the grid is a square, and (b} the basic
rectangle has a shape number of order o for such grid. Already positioned,
the rectangle selected in this step closely coincides with the basic rectangle.-

In practice, we have found better not to approximate the eccentricity, but
the sides of the rectangle instead. That iz, select a rectangle with long
side closest to y=(0/2) (e/1+e).

3. Mark with a 1 each cell of the grid of step 2 that is more than 50% contained
in the region.

The collection of grid squared containning a 1 forms a discrete shape.

4. Find the shape number of the discrete shape of step 3, and give that as answer
{but see discussion below).

An example is giwven in Fig. 7.

Is the shape number found in step 4 indeed of order of The crucial step is 3

above. The answer is discussed after an alternative step 3.

3bis (variant). On the perimeter of the square selected in step 2, place o sticks
on the "wires® of the grid. Locking at each cornex (of type 1 in Fig. 2g)} of these
sticks, push it and make it become a corner of type 3 if it surrounds a cell of
the grill filled less than 50% with the region. Xeep pushing corners (Fig. 7,
gteps 3bis) until no further progress is possible., (Then go to step 4 above) .

This step 3b could be taken instead of step 3.

It is clear that this step does not alter the order of the shape number, since
the number of sticks does not change.

What could increase the number of sticks (the length of the perimeter) is a
depression in the boundary, because (Fig. 8) in order to sink stick a to position b
we need two extra sticks. In this case we end up with a shape number of order o+2,
or in general of order o + 24, where 4 is the depth of the depressicon.

The way to correct this anomaly iz to begin step 2 by selecting a rectangle not
of order o (because we have just found that ¢ produces a shape number of order
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o + 2d} but of order o - 24, and then the depression will add 24 sticks to it,
obtaining a shape number of the correct order.

Since a depression changes depth as the size of the grid varies, we may have
to try step 2 with rectangles of order o-2d, o-2d+2, ..., o—-2, wmtil we find the
shape number of order o.

Informally speaking, the order of the shape number is the degree of resclution
being used to encode the shape.

The eccentricity of the shape is important. It is a shape parameter coarser
than the shape nurber. Two shapes of order o with basic rectangles of different
sccentricities can not be egual. The basic rectangle and the eccentricity can be

dircetly computed from the shape numbexs (suggestion 6).

\STEP 2 SELECT RECTANGLE 6x3

- Ibis >
[ :" i

112312213121222213
FIGURE 7 " FINDING THE SHAPE NUMBER "

The shape number of order |8 of region A is desired.

The answer is 112312213121222213 The main procedure is
through steps 1,2,3,4. Step 3bis is a {long) step thot can
be taken instead of step 3, Se fext.

Each figure cairies its own shape number "within it"

Degenerate regions. If the grid size is too large for some parts ef a region,

there will be totally blank squares that break the discrete shape into two or more
pieces. Then the shape number ¢f that region does not exist for that order. This
is not an anomaly, but it is giving information regarding the minimum size grid

for which a shape number makes sense (Fig. 8-II).

Meaningful shape order. 2 region with a very ragged and twisted perimeter will

"gemand" a higher order for a proper description than a region with smooth boundary;
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it expects more accuracy, because of its higher information content. Bribiesca (et

al,1978) measures this appropriateness, also related to degenerate regions.
THE DEGREE OF SIMITARITY BETWEEN THE SHAPES OF TWO REGICHS

The shape number of a region enables us to find out instances of a given shape,
even when distorted by.enlargement or rotation. It answers the gquestion "Have
these twe regions the same shape?”, up to an order ao.

In practice, however, a shape rarely repeats itself, due to noise and the allow-
able variations (for instance, ten sillouettes of apples have similar but not iden-
tical shapes). The relevant questions to answer are "How much different are these
two forms?", "How much do these two shapes resemble each other?", "Is reglon A
closer in shape to B, or to C?". This section gives a procedure to ¢uantitatively
answer these guestions.

Wwhen the shapes of two regions A and B are compared, we can notice that the shape
of oerder 4 of A, sdta}, is equal to 1111 {the only shape of order 4}, and is there-—
fore equal ta s4lb]-

Also sﬁia) = sﬁtb}: probably sB(a) = sB{b]. It is likely that their first few
shape numbers be identical. The reason is that the discrete shapes are coarse
and not varied at low crders, where the "resoclution” is low. '

Nevertheless, most likely 5100(a} £ 3100(h], also sggta} = sgaib}, etc. This
is ewpected, because, due to the finer precision at higher crders, there exists a

large variety of shapes, thus the discrimination between A and B is more demanding.

Of course, if A and B were very similar {but not identical), cne could need to

go up to say 170 te find that s (a) # 3170{b). tn the other hand, if they are

170
visibly different (not alike at all), already at crder 10 we will be having

s1u(a} F 510{h).

Thys, as we increase the order o of the two shape numbers sofa) and so(b), they
begin being equal but at some order they become different from that point on. How
deeply they remain egual gives us an idea of the gimilarity between the shapes of

a and b,

Degree of similarity k between the shapes of twe regions a and b: ¥t is the largest

order for which their shape numbers still coincide.
That is, it is the largest m for which sm(a) = sm(b), but sm+i(a] ¥ sm+i(b] for
all i greater than Q.

That is, we have sq(a] = s4lh), seia} = sﬁtb}, sa{a) = Saib}; . Sk(al = Sklb),

sk+2{a} ¥ 5 (b}, sk+4(a‘.l # skM{b), e .

k+2

If a and b are regions with degree k of similarity, we write aakb.
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Example. For the figures of Fig, 9, we have for figures a, b and c:

54{a) =1111 séib) =1111 54{01 =111

sﬁia) =112 112 sﬁﬁbl =11T2112 EG{C) =71312112
sa{a) = 11221122 Ssib] = 12121212 SB[G} = 123123212
510(a}= 1122211222 510{b}= 1131212122 S1DKC)= 1212212122
512(a}= 1122211312112 512(b)= 121221221213 512{c)= 121222121222
514(a}= 11222211231132 514(b)= 12121312212123 514(C}= 11312212212213
Therefore, a and b have a degree of simileaxrity equal to &6: aﬁ%h.

a and ¢ have a degree of similarity equal to &, written a Cy

b and ¢ have a degree of similarity equal ¢0 8, written b= c.

8
This is represented both as a similarity tree (Fig. 9b) and as a similarity matrix

(Fig. 29c) where other regiong were also included.
The sinilarity matrix is symmetrical; in fact, it is easily proved that, for
arbitrary regions a and b,
{1 {Thm.) The relation "a and b have degrea k of similarity" (for a fixed k)
is not an equivalence relation, but
{2) {(Thm.) The rclation "a and b have degree of similarity of at least k" (for

a fixed k) is an equivalence relation,

In fact, the equivalence classes of {2) for k=10 are nine, and a canonical shape
for cach of them is given in Fig. 5.

Informally speaking, the size (power) of the magnifying lenhs that barely confuses
two regions gives the degree of similarity between such regions.

We could see the wheole procedure as follows: A nmumber 135 associated to each one
of two regions. If the numbers are equal, the regions have identical shape. If
not., ancther pair of numbers is deduced, and 50 on until we find that the two
numbers coingide. The number of stages necded is an indication of the dissemblance

of the twe shapes.

Remarks on the degree of similarity

Mo parsing is necessary. To find the degree of similarity between a and b, shape

numbers are compared for equality. Two shape numbers of different orders are
incommensurable (can not be compared, should not, need not).

Twe shape numbers of the same order axre either egqual or different. If different,
there is no need to compare "how close they are”.

To find out the degree of similarity, a binary search is used: Is SB(a) equal
to sg{h}? Then compare at order 100 (the highest). Then at the middle. Then at

the middle of the remaining valid half. And so on. A modified binary search
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is better2

Wheatstone Bridge. Tn this old instrument to measure the value of resistances,

an amperimeter says whether a current is zero or not. But this amperineter does
not measure the resistance itself; it only says; "current is zero. Stop!™ Then
the valuz of the resistapnce is obtained by 3 formula that does not involve the
current (because it is zerc!}. Naturally, it does not need to be a high precission
amperimeter.

In our case; the degree of similarity is not giwven by the shape numbers compari-

son test. It is given by a process that uses the comparison test.

Temperature readings. If the degree of similarity between a and b is 14, and that

botween ¢ and d is 28, you can conclude that ¢ and d are closer to each other than
a and b. BPut we can not conclude that c and & are "twice as close in shape” as

a and b. This is like the temperature: a body at 80°C is not twice as hot as one

at 40°C {if you do not believe it, convert them to °F, or te °K). But see sugges-

tion 9,

Mtradistance. If we define the distance bétween two shapes a and b to be the
inverse of their degree of similarity, then we could easily prove that this is not
only a distance, but it iz also an ultradistance: it obeys d(a,c) < swp {d{a,b).,

dib,c)} in addition to the less demanding condition dfa,c) £ d(a,b) + d(b,e).

Comments on this theory of shapes

Shape numbers are not invariant wnder (1) reflections (mlrxor images); (2} skew-
ing, where the figure is distorted by changing the angle between X and y: {1) une-

gqual expansion, that is x'=c1x, ¥Y'=¢_¥, with c, £ Ey This transforms a circle

into an ellipse. ’

These transformations (1)-(3) alter what could be considered the (intultive)
shape of a figure. At the end of the paper a "Theory E" of shapes is presented,
where condition (3) is violated, and therefore all circles and ellipses, disre-

garding size, eccentricity, orientation, have the same B shape numbers.

Problems with this theory of shapes

1. Ocassional loop in the similarity tres. Due to noise or the 50% reguirement

for quantization, and at low orders, sometimes it is cbserved a transitory diver—

2Hadler, M., remarked at his Seminar on Pattern Recognition (IRIA, France, Feb.78}
that =ince it costs more to compare larger orders than smaller orders, do not
compare at the middle peoint, but move instead towards the extreme with tha cheapest
test by an amount proportional to the ratic of high to low costs.
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gence and then convergence in the shapes of two regions, v. gr., saia} = sB{b),
510{a) ¥ s1o{b), SIZ(a) = 512(b), 514(3] e 514(h?. siﬁta) ¥ 516(b), ... I.e., they
were already different at order 10, but they are again ecual at order 12 thowever,
mly to separate scon forever). This still gives a uwnique shape number for a
region, but makes the definition of the degree of similarity less attractive, and
the procedure to find it, unreliable.

Only loops of size 2 [such as the example giwven) have been found, infreguently.

A way to make these loops disappear is to ignore half of the orders, for
instance those not divisible by four. Orders 4, 8, 12, 16, ... remain. Aall the

loops of size 2 have vanished (suggestien 8b).

2. FKon existent shape numbers. Shape number of order o may ocassionally not
exist for a given figqure, due for instance to symmetrical holes of the type of
figure 8.I. This does not bother the similarity procedure, but it is a nnisance

not to have that shape number. See also suggestion 8a.

3. Quantization of the eccentricity. For an object of eccentricity 1.6 (Fig. 7).
what rectangle will be used as the basis for computing its shape number of order

127 Will we use the 3 by 3 sguare (e=1) or the 4 by 2 rectangle (e=2)? 2n error
will be commited in any case. Youn have to take one or the other. There seems to

be no way out of this. See suggestion 5.

We now prasent a theory that has none of these problams.
THEORY "B" FOR SHAPE DESCRIPTICON AND SHAPE COMPARISON

To obtain this new theory, we will make some changes to the old one:

1. Force the eccentricity of any region to be equal to one, by performing an aniso-

tropic dilation of its axis, X' = ¢ x, ¥' = czy- Now a circle and an ellipse will

3
have the same Bshape; the Bshape of a rectangle will coincide with that of an
square. &3 far as the discrete shapes, the only discrete Bshapes that now exist

are those obtained from sguares.

2. Do not go into depressions (Fig. 8.I) with width smaller than the size of the
cell of the grid. fThis avoids degenerate shapes (cf. also 'Reascnable shape numbers'
above), That is, if a region is "scratched" by thin lines (thiner than the size

of the grid) that belong to the background, either ignore them (act as if they were
not there} ox else, if they can not be ignored, this Theory "B" says that the size
of this grid is inappropriate te describe such region, and that its Bshape number

at this order does not exist.

3. Let these depressioms (Fig., 8.I) generate Bshape numbers having a number of

ternary digits larger than the expected order. That is, do notcorrect the anomaly
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that these depressions cause. The perimeter of the Bshape does not tell anymore

its order.

4. Elliminate the orders that are not powers of two. The only valid corders for
Bshape numbers are 4, 8, 16, ... These numbers still indicate the number of
sticks to place around the basic square (remember, now a rectangle is converted

first into a square) of the region (refer te step 3b of Fig. 7).

The procedure is the following:

To find the Bshape number of order o = 2" of a region:
1. Find ocut the basic rectangle of the region and convert it into a square.

Declare that the Bshape number does not exist if the region has parts (nacks,
straights) or depressions (channels) narrower than 22'“ or 4/o0.
2. Make a grid by dividing the side of the basic sgquare inte o/4 parts.
3. Mark with a 1 each cell of the grid of step 2 that is more than 50% contained
in the region {(step 3bis given above could alse have been used instead ¢f this
step 3). The collection of grid squares containning a 1 forms a discrete Bshape.
4, Find the shape number of the discrete Bshape of step 3, and give that as answer,

even if it has more than o ternary digits.

The crder of a Bshape number is four times the number of parts into which the side

of the basic square was divided. It is alsc the perimeter (measured by the number
of sticks) of the basic square.
It is no longer the number of ternary digits of the Bshape number, nor the per-

imeter of the discrete Bshape.

The degree of similarity between the Bshapes of two regions is obtained as before.

Definition unchanged.

Downwards constructability. Given the Bshape numbex of order o of a region, the

Bshape number of crder o/2 can be deduced from it, by regroupping appropriate sets
of four neighboring cells into a cell for the lower order. Therefore, if two re-
gions have the same Bshape number of order ¢, they will continue to have equal
numbers of smaller order, until they cease to exist. This gets rid of problem 1

‘orassicnal loops in the similarity tres' of the former theory.

Upwards existence. If the Bshape number of order o of a region exists, the exist-

ence of numbers for higher orders is guaranteed: (1) the inexistence of channels
or isthmus of the regiecn thiner than 4/o implies the inexistance of those narrower
than 4/(o+i), for i»0; and {2} wider depressions {wider than Fig. 8.I) will
produce valid parts of the Bshape number, although its number of digits may
increase. This defeats problem 2 of the former theory, "non existent shape num-—
bers™.

Finally, problem 2 of the former theory "quantization of the eccentrigity” is

not present in Theory "B" because all eccentricities are now equal to 1.
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Nevertheless, the authors like more the former theory.

Disadvantage of Theory "B". Squeezing along one axis is now a valid ([Bshape

preserving} transformation. Thus, either yvour application does not care for the
eccentricity or aspect ratio, or you carry it as another parameter, in addition
to the Bshape number. I suppose you are gecing to be carxying other parameters of
the region {(length, orientation) anyway.

Alsc, more care needs to be exercised now when selecting the major and minor

axis, to avold noise perturbations (cf. suggestion 7).

al| ¥
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FIGURE 8 " HOLES AND DEGENERATE SHAPES™

I: A deprassion of depth d Increases the shaps number by 2d.
II: Degenerate regiony split thae discrate shops bul da ot have

o shaps numhbher at this order,
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FIGURE ¢ " DEGREE OF SIMILARITY"
(A) regions to be analyzed (B) Similarity tree for {A)
{C) Similority matrix far regions {A).
The shapes form o hierorchy, a iree with root at degres = 4.
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Suggesticns and recommendations for further work

1. Use other tessellations (trisngles, hexagons) instead of the square grid.

I would like to see the triangle and circle as primitive shapes at low orders.

2. Usc eight directions for the sticks, not four. This will produce more shape
numbers of a given order, thus making the tables of figures 4-6 larger. But this
is safe because the deduction of the shape number does not involve table lookup

or comparison with these cancnlcal shapes.

3. Apply these theories to Scene Analysis of coloring kooks {Guzman, 1971); chreo-
mosomes; silouettes of industrial parts on a conveyor belt; hand printed digits
and zip codes; automatic taxonomy of shapes of shoes, airplanes, insects (their

outline); texture descripticn where the pictures are binary.
4. Extend these theories to shapes with holes inside them.

5. (Refer to problem 3 of the first theory and to step 2 of the procedure to find
the shape number) a) Distort slightly the basic rectangle of the region, together
with the regicn, so as to have it coincide exactly with the rectangle chosen in

step 2: the grid is now of rectangles that are almost sguares. b} Select in step
2 the rectangle of order o that minimizes the discrepancy between the areas of the

region end of the rectangle.

6. write procedure to find the eccentricity from the shape number. Hint: find

the basic rectangle.

7. A better method to encase the region into a box is needed. WNoise could intro-
duce errors in length and position. Use the metheds in {(Eriblesca et al.,1978;
Freeman and Shapira,1975; Guzman,1971).

8. (Refer to problems 1 and 2 of first theoryl: a) Of course, given an oxder
{30, say) it is possible to find the best shape number of order 30 that fits the
region, by comparing (in the least squares sense) the reglon with all the shapes
of order 30, In this way the existence of a shape number for any order and any
region could be guaranteed (Bribiesca and Guzmfn,1978). I suggest to look for a
procedure that avoids many comparisons but still gives back the shape number of
order 30. This undiscovered method could be slower, since it will be used only
when the riormal procedurs fails. b) In order to make the loops vanish, do not use
all orders. Fven more, $pace them non linearly: use only orders 4, &, 10, 16,

24, ...

9. BApply these theories to clustering. Do you want to group 200 figures into 24
classes according to their shapes? Construct their similarity tree, and cut it at
a level such that the number of nodes at that level is approx. 24. You ¢ould

answer relative likeness questions such as: "Is the difference between a and 4
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larger than the difference between ¢ and £?" The answer could be: "Yes, because

a¥10d and eaﬁ4f". e and f went together longer. They needed a stronger lens,

of order 16, to separate them.
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